// Copyright (c) 2017 Couchbase, Inc. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package geo import ( "math" ) var earthDiameterPerLatitude []float64 var sinTab []float64 var cosTab []float64 var asinTab []float64 var asinDer1DivF1Tab []float64 var asinDer2DivF2Tab []float64 var asinDer3DivF3Tab []float64 var asinDer4DivF4Tab []float64 const radiusTabsSize = (1 << 10) + 1 const radiusDelta = (math.Pi / 2) / (radiusTabsSize - 1) const radiusIndexer = 1 / radiusDelta const sinCosTabsSize = (1 << 11) + 1 const asinTabsSize = (1 << 13) + 1 const oneDivF2 = 1 / 2.0 const oneDivF3 = 1 / 6.0 const oneDivF4 = 1 / 24.0 // 1.57079632673412561417e+00 first 33 bits of pi/2 var pio2Hi = math.Float64frombits(0x3FF921FB54400000) // 6.07710050650619224932e-11 pi/2 - PIO2_HI var pio2Lo = math.Float64frombits(0x3DD0B4611A626331) var asinPio2Hi = math.Float64frombits(0x3FF921FB54442D18) // 1.57079632679489655800e+00 var asinPio2Lo = math.Float64frombits(0x3C91A62633145C07) // 6.12323399573676603587e-17 var asinPs0 = math.Float64frombits(0x3fc5555555555555) // 1.66666666666666657415e-01 var asinPs1 = math.Float64frombits(0xbfd4d61203eb6f7d) // -3.25565818622400915405e-01 var asinPs2 = math.Float64frombits(0x3fc9c1550e884455) // 2.01212532134862925881e-01 var asinPs3 = math.Float64frombits(0xbfa48228b5688f3b) // -4.00555345006794114027e-02 var asinPs4 = math.Float64frombits(0x3f49efe07501b288) // 7.91534994289814532176e-04 var asinPs5 = math.Float64frombits(0x3f023de10dfdf709) // 3.47933107596021167570e-05 var asinQs1 = math.Float64frombits(0xc0033a271c8a2d4b) // -2.40339491173441421878e+00 var asinQs2 = math.Float64frombits(0x40002ae59c598ac8) // 2.02094576023350569471e+00 var asinQs3 = math.Float64frombits(0xbfe6066c1b8d0159) // -6.88283971605453293030e-01 var asinQs4 = math.Float64frombits(0x3fb3b8c5b12e9282) // 7.70381505559019352791e-02 var twoPiHi = 4 * pio2Hi var twoPiLo = 4 * pio2Lo var sinCosDeltaHi = twoPiHi/sinCosTabsSize - 1 var sinCosDeltaLo = twoPiLo/sinCosTabsSize - 1 var sinCosIndexer = 1 / (sinCosDeltaHi + sinCosDeltaLo) var sinCosMaxValueForIntModulo = ((math.MaxInt64 >> 9) / sinCosIndexer) * 0.99 var asinMaxValueForTabs = math.Sin(73.0 * degreesToRadian) var asinDelta = asinMaxValueForTabs / (asinTabsSize - 1) var asinIndexer = 1 / asinDelta func init() { // initializes the tables used for the sloppy math functions // sin and cos sinTab = make([]float64, sinCosTabsSize) cosTab = make([]float64, sinCosTabsSize) sinCosPiIndex := (sinCosTabsSize - 1) / 2 sinCosPiMul2Index := 2 * sinCosPiIndex sinCosPiMul05Index := sinCosPiIndex / 2 sinCosPiMul15Index := 3 * sinCosPiIndex / 2 for i := 0; i < sinCosTabsSize; i++ { // angle: in [0,2*PI]. angle := float64(i)*sinCosDeltaHi + float64(i)*sinCosDeltaLo sinAngle := math.Sin(angle) cosAngle := math.Cos(angle) // For indexes corresponding to null cosine or sine, we make sure the value is zero // and not an epsilon. This allows for a much better accuracy for results close to zero. if i == sinCosPiIndex { sinAngle = 0.0 } else if i == sinCosPiMul2Index { sinAngle = 0.0 } else if i == sinCosPiMul05Index { sinAngle = 0.0 } else if i == sinCosPiMul15Index { sinAngle = 0.0 } sinTab[i] = sinAngle cosTab[i] = cosAngle } // asin asinTab = make([]float64, asinTabsSize) asinDer1DivF1Tab = make([]float64, asinTabsSize) asinDer2DivF2Tab = make([]float64, asinTabsSize) asinDer3DivF3Tab = make([]float64, asinTabsSize) asinDer4DivF4Tab = make([]float64, asinTabsSize) for i := 0; i < asinTabsSize; i++ { // x: in [0,ASIN_MAX_VALUE_FOR_TABS]. x := float64(i) * asinDelta asinTab[i] = math.Asin(x) oneMinusXSqInv := 1.0 / (1 - x*x) oneMinusXSqInv05 := math.Sqrt(oneMinusXSqInv) oneMinusXSqInv15 := oneMinusXSqInv05 * oneMinusXSqInv oneMinusXSqInv25 := oneMinusXSqInv15 * oneMinusXSqInv oneMinusXSqInv35 := oneMinusXSqInv25 * oneMinusXSqInv asinDer1DivF1Tab[i] = oneMinusXSqInv05 asinDer2DivF2Tab[i] = (x * oneMinusXSqInv15) * oneDivF2 asinDer3DivF3Tab[i] = ((1 + 2*x*x) * oneMinusXSqInv25) * oneDivF3 asinDer4DivF4Tab[i] = ((5 + 2*x*(2+x*(5-2*x))) * oneMinusXSqInv35) * oneDivF4 } // earth radius a := 6378137.0 b := 6356752.31420 a2 := a * a b2 := b * b earthDiameterPerLatitude = make([]float64, radiusTabsSize) earthDiameterPerLatitude[0] = 2.0 * a / 1000 earthDiameterPerLatitude[radiusTabsSize-1] = 2.0 * b / 1000 for i := 1; i < radiusTabsSize-1; i++ { lat := math.Pi * float64(i) / (2*radiusTabsSize - 1) one := math.Pow(a2*math.Cos(lat), 2) two := math.Pow(b2*math.Sin(lat), 2) three := math.Pow(float64(a)*math.Cos(lat), 2) four := math.Pow(b*math.Sin(lat), 2) radius := math.Sqrt((one + two) / (three + four)) earthDiameterPerLatitude[i] = 2 * radius / 1000 } } // earthDiameter returns an estimation of the earth's diameter at the specified // latitude in kilometers func earthDiameter(lat float64) float64 { index := math.Mod(math.Abs(lat)*radiusIndexer+0.5, float64(len(earthDiameterPerLatitude))) if math.IsNaN(index) { return 0 } return earthDiameterPerLatitude[int(index)] } var pio2 = math.Pi / 2 func sin(a float64) float64 { return cos(a - pio2) } // cos is a sloppy math (faster) implementation of math.Cos func cos(a float64) float64 { if a < 0.0 { a = -a } if a > sinCosMaxValueForIntModulo { return math.Cos(a) } // index: possibly outside tables range. index := int(a*sinCosIndexer + 0.5) delta := (a - float64(index)*sinCosDeltaHi) - float64(index)*sinCosDeltaLo // Making sure index is within tables range. // Last value of each table is the same than first, so we ignore it (tabs size minus one) for modulo. index &= (sinCosTabsSize - 2) // index % (SIN_COS_TABS_SIZE-1) indexCos := cosTab[index] indexSin := sinTab[index] return indexCos + delta*(-indexSin+delta*(-indexCos*oneDivF2+delta*(indexSin*oneDivF3+delta*indexCos*oneDivF4))) } // asin is a sloppy math (faster) implementation of math.Asin func asin(a float64) float64 { var negateResult bool if a < 0 { a = -a negateResult = true } if a <= asinMaxValueForTabs { index := int(a*asinIndexer + 0.5) delta := a - float64(index)*asinDelta result := asinTab[index] + delta*(asinDer1DivF1Tab[index]+delta*(asinDer2DivF2Tab[index]+delta*(asinDer3DivF3Tab[index]+delta*asinDer4DivF4Tab[index]))) if negateResult { return -result } return result } // value > ASIN_MAX_VALUE_FOR_TABS, or value is NaN // This part is derived from fdlibm. if a < 1 { t := (1.0 - a) * 0.5 p := t * (asinPs0 + t*(asinPs1+t*(asinPs2+t*(asinPs3+t*(asinPs4+t+asinPs5))))) q := 1.0 + t*(asinQs1+t*(asinQs2+t*(asinQs3+t*asinQs4))) s := math.Sqrt(t) z := s + s*(p/q) result := asinPio2Hi - ((z + z) - asinPio2Lo) if negateResult { return -result } return result } // value >= 1.0, or value is NaN if a == 1.0 { if negateResult { return -math.Pi / 2 } return math.Pi / 2 } return math.NaN() }