0
0
bleve/search/searcher/search_numeric_range.go
Marty Schoch 77101ae424 filter numeric range terms against the term dictionary
previously, all numeric terms required to implement a numeric
range search were passed to the disjunction query (possibly
exceeding the disjunction clause limit)

now, after producing the list of terms, we filter them against
the terms which actually exist in the term dictionary.  the
theory is that this will often greatly reduce the number of terms
and therefore reduce the likelihood that you would run into the
disjunction term limit in practice.

because the term dictionary interface does not have a seek API
and we're reluctant to add that now, i chose to do a binary
search of the terms, which either finds the term, or not. then
subsequent binary searches can proceed from that position,
since both the list of terms and the term dictionary are sorted.
2017-05-31 13:15:13 -04:00

208 lines
5.1 KiB
Go

// Copyright (c) 2014 Couchbase, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package searcher
import (
"bytes"
"math"
"sort"
"github.com/blevesearch/bleve/index"
"github.com/blevesearch/bleve/numeric"
"github.com/blevesearch/bleve/search"
)
func NewNumericRangeSearcher(indexReader index.IndexReader,
min *float64, max *float64, inclusiveMin, inclusiveMax *bool, field string,
boost float64, options search.SearcherOptions) (search.Searcher, error) {
// account for unbounded edges
if min == nil {
negInf := math.Inf(-1)
min = &negInf
}
if max == nil {
Inf := math.Inf(1)
max = &Inf
}
if inclusiveMin == nil {
defaultInclusiveMin := true
inclusiveMin = &defaultInclusiveMin
}
if inclusiveMax == nil {
defaultInclusiveMax := false
inclusiveMax = &defaultInclusiveMax
}
// find all the ranges
minInt64 := numeric.Float64ToInt64(*min)
if !*inclusiveMin && minInt64 != math.MaxInt64 {
minInt64++
}
maxInt64 := numeric.Float64ToInt64(*max)
if !*inclusiveMax && maxInt64 != math.MinInt64 {
maxInt64--
}
// FIXME hard-coded precision, should match field declaration
termRanges := splitInt64Range(minInt64, maxInt64, 4)
terms := termRanges.Enumerate()
if len(terms) < 1 {
return NewMatchNoneSearcher(indexReader)
}
var err error
terms, err = filterCandidateTerms(indexReader, terms, field)
if err != nil {
return nil, err
}
if len(terms) < 1 {
return NewMatchNoneSearcher(indexReader)
}
if tooManyClauses(len(terms)) {
return nil, tooManyClausesErr()
}
return NewMultiTermSearcherBytes(indexReader, terms, field, boost, options,
true)
}
func filterCandidateTerms(indexReader index.IndexReader,
terms [][]byte, field string) (rv [][]byte, err error) {
fieldDict, err := indexReader.FieldDictRange(field, terms[0], terms[len(terms)-1])
if err != nil {
return nil, err
}
// enumerate the terms and check against list of terms
tfd, err := fieldDict.Next()
for err == nil && tfd != nil {
termBytes := []byte(tfd.Term)
i := sort.Search(len(terms), func(i int) bool { return bytes.Compare(terms[i], termBytes) >= 0 })
if i < len(terms) && bytes.Compare(terms[i], termBytes) == 0 {
rv = append(rv, terms[i])
}
terms = terms[i:]
tfd, err = fieldDict.Next()
}
if cerr := fieldDict.Close(); cerr != nil && err == nil {
err = cerr
}
return rv, err
}
type termRange struct {
startTerm []byte
endTerm []byte
}
func (t *termRange) Enumerate() [][]byte {
var rv [][]byte
next := t.startTerm
for bytes.Compare(next, t.endTerm) <= 0 {
rv = append(rv, next)
next = incrementBytes(next)
}
return rv
}
func incrementBytes(in []byte) []byte {
rv := make([]byte, len(in))
copy(rv, in)
for i := len(rv) - 1; i >= 0; i-- {
rv[i] = rv[i] + 1
if rv[i] != 0 {
// didn't overflow, so stop
break
}
}
return rv
}
type termRanges []*termRange
func (tr termRanges) Enumerate() [][]byte {
var rv [][]byte
for _, tri := range tr {
trie := tri.Enumerate()
rv = append(rv, trie...)
}
return rv
}
func splitInt64Range(minBound, maxBound int64, precisionStep uint) termRanges {
rv := make(termRanges, 0)
if minBound > maxBound {
return rv
}
for shift := uint(0); ; shift += precisionStep {
diff := int64(1) << (shift + precisionStep)
mask := ((int64(1) << precisionStep) - int64(1)) << shift
hasLower := (minBound & mask) != int64(0)
hasUpper := (maxBound & mask) != mask
var nextMinBound int64
if hasLower {
nextMinBound = (minBound + diff) &^ mask
} else {
nextMinBound = minBound &^ mask
}
var nextMaxBound int64
if hasUpper {
nextMaxBound = (maxBound - diff) &^ mask
} else {
nextMaxBound = maxBound &^ mask
}
lowerWrapped := nextMinBound < minBound
upperWrapped := nextMaxBound > maxBound
if shift+precisionStep >= 64 || nextMinBound > nextMaxBound ||
lowerWrapped || upperWrapped {
// We are in the lowest precision or the next precision is not available.
rv = append(rv, newRange(minBound, maxBound, shift))
// exit the split recursion loop
break
}
if hasLower {
rv = append(rv, newRange(minBound, minBound|mask, shift))
}
if hasUpper {
rv = append(rv, newRange(maxBound&^mask, maxBound, shift))
}
// recurse to next precision
minBound = nextMinBound
maxBound = nextMaxBound
}
return rv
}
func newRange(minBound, maxBound int64, shift uint) *termRange {
maxBound |= (int64(1) << shift) - int64(1)
minBytes := numeric.MustNewPrefixCodedInt64(minBound, shift)
maxBytes := numeric.MustNewPrefixCodedInt64(maxBound, shift)
return newRangeBytes(minBytes, maxBytes)
}
func newRangeBytes(minBytes, maxBytes []byte) *termRange {
return &termRange{
startTerm: minBytes,
endTerm: maxBytes,
}
}