aboutsummaryrefslogtreecommitdiff
path: root/vendor/golang.org/x/text/unicode/norm/composition.go
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/golang.org/x/text/unicode/norm/composition.go')
-rw-r--r--vendor/golang.org/x/text/unicode/norm/composition.go512
1 files changed, 512 insertions, 0 deletions
diff --git a/vendor/golang.org/x/text/unicode/norm/composition.go b/vendor/golang.org/x/text/unicode/norm/composition.go
new file mode 100644
index 0000000..e2087bc
--- /dev/null
+++ b/vendor/golang.org/x/text/unicode/norm/composition.go
@@ -0,0 +1,512 @@
+// Copyright 2011 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package norm
+
+import "unicode/utf8"
+
+const (
+ maxNonStarters = 30
+ // The maximum number of characters needed for a buffer is
+ // maxNonStarters + 1 for the starter + 1 for the GCJ
+ maxBufferSize = maxNonStarters + 2
+ maxNFCExpansion = 3 // NFC(0x1D160)
+ maxNFKCExpansion = 18 // NFKC(0xFDFA)
+
+ maxByteBufferSize = utf8.UTFMax * maxBufferSize // 128
+)
+
+// ssState is used for reporting the segment state after inserting a rune.
+// It is returned by streamSafe.next.
+type ssState int
+
+const (
+ // Indicates a rune was successfully added to the segment.
+ ssSuccess ssState = iota
+ // Indicates a rune starts a new segment and should not be added.
+ ssStarter
+ // Indicates a rune caused a segment overflow and a CGJ should be inserted.
+ ssOverflow
+)
+
+// streamSafe implements the policy of when a CGJ should be inserted.
+type streamSafe uint8
+
+// first inserts the first rune of a segment. It is a faster version of next if
+// it is known p represents the first rune in a segment.
+func (ss *streamSafe) first(p Properties) {
+ *ss = streamSafe(p.nTrailingNonStarters())
+}
+
+// insert returns a ssState value to indicate whether a rune represented by p
+// can be inserted.
+func (ss *streamSafe) next(p Properties) ssState {
+ if *ss > maxNonStarters {
+ panic("streamSafe was not reset")
+ }
+ n := p.nLeadingNonStarters()
+ if *ss += streamSafe(n); *ss > maxNonStarters {
+ *ss = 0
+ return ssOverflow
+ }
+ // The Stream-Safe Text Processing prescribes that the counting can stop
+ // as soon as a starter is encountered. However, there are some starters,
+ // like Jamo V and T, that can combine with other runes, leaving their
+ // successive non-starters appended to the previous, possibly causing an
+ // overflow. We will therefore consider any rune with a non-zero nLead to
+ // be a non-starter. Note that it always hold that if nLead > 0 then
+ // nLead == nTrail.
+ if n == 0 {
+ *ss = streamSafe(p.nTrailingNonStarters())
+ return ssStarter
+ }
+ return ssSuccess
+}
+
+// backwards is used for checking for overflow and segment starts
+// when traversing a string backwards. Users do not need to call first
+// for the first rune. The state of the streamSafe retains the count of
+// the non-starters loaded.
+func (ss *streamSafe) backwards(p Properties) ssState {
+ if *ss > maxNonStarters {
+ panic("streamSafe was not reset")
+ }
+ c := *ss + streamSafe(p.nTrailingNonStarters())
+ if c > maxNonStarters {
+ return ssOverflow
+ }
+ *ss = c
+ if p.nLeadingNonStarters() == 0 {
+ return ssStarter
+ }
+ return ssSuccess
+}
+
+func (ss streamSafe) isMax() bool {
+ return ss == maxNonStarters
+}
+
+// GraphemeJoiner is inserted after maxNonStarters non-starter runes.
+const GraphemeJoiner = "\u034F"
+
+// reorderBuffer is used to normalize a single segment. Characters inserted with
+// insert are decomposed and reordered based on CCC. The compose method can
+// be used to recombine characters. Note that the byte buffer does not hold
+// the UTF-8 characters in order. Only the rune array is maintained in sorted
+// order. flush writes the resulting segment to a byte array.
+type reorderBuffer struct {
+ rune [maxBufferSize]Properties // Per character info.
+ byte [maxByteBufferSize]byte // UTF-8 buffer. Referenced by runeInfo.pos.
+ nbyte uint8 // Number or bytes.
+ ss streamSafe // For limiting length of non-starter sequence.
+ nrune int // Number of runeInfos.
+ f formInfo
+
+ src input
+ nsrc int
+ tmpBytes input
+
+ out []byte
+ flushF func(*reorderBuffer) bool
+}
+
+func (rb *reorderBuffer) init(f Form, src []byte) {
+ rb.f = *formTable[f]
+ rb.src.setBytes(src)
+ rb.nsrc = len(src)
+ rb.ss = 0
+}
+
+func (rb *reorderBuffer) initString(f Form, src string) {
+ rb.f = *formTable[f]
+ rb.src.setString(src)
+ rb.nsrc = len(src)
+ rb.ss = 0
+}
+
+func (rb *reorderBuffer) setFlusher(out []byte, f func(*reorderBuffer) bool) {
+ rb.out = out
+ rb.flushF = f
+}
+
+// reset discards all characters from the buffer.
+func (rb *reorderBuffer) reset() {
+ rb.nrune = 0
+ rb.nbyte = 0
+}
+
+func (rb *reorderBuffer) doFlush() bool {
+ if rb.f.composing {
+ rb.compose()
+ }
+ res := rb.flushF(rb)
+ rb.reset()
+ return res
+}
+
+// appendFlush appends the normalized segment to rb.out.
+func appendFlush(rb *reorderBuffer) bool {
+ for i := 0; i < rb.nrune; i++ {
+ start := rb.rune[i].pos
+ end := start + rb.rune[i].size
+ rb.out = append(rb.out, rb.byte[start:end]...)
+ }
+ return true
+}
+
+// flush appends the normalized segment to out and resets rb.
+func (rb *reorderBuffer) flush(out []byte) []byte {
+ for i := 0; i < rb.nrune; i++ {
+ start := rb.rune[i].pos
+ end := start + rb.rune[i].size
+ out = append(out, rb.byte[start:end]...)
+ }
+ rb.reset()
+ return out
+}
+
+// flushCopy copies the normalized segment to buf and resets rb.
+// It returns the number of bytes written to buf.
+func (rb *reorderBuffer) flushCopy(buf []byte) int {
+ p := 0
+ for i := 0; i < rb.nrune; i++ {
+ runep := rb.rune[i]
+ p += copy(buf[p:], rb.byte[runep.pos:runep.pos+runep.size])
+ }
+ rb.reset()
+ return p
+}
+
+// insertOrdered inserts a rune in the buffer, ordered by Canonical Combining Class.
+// It returns false if the buffer is not large enough to hold the rune.
+// It is used internally by insert and insertString only.
+func (rb *reorderBuffer) insertOrdered(info Properties) {
+ n := rb.nrune
+ b := rb.rune[:]
+ cc := info.ccc
+ if cc > 0 {
+ // Find insertion position + move elements to make room.
+ for ; n > 0; n-- {
+ if b[n-1].ccc <= cc {
+ break
+ }
+ b[n] = b[n-1]
+ }
+ }
+ rb.nrune += 1
+ pos := uint8(rb.nbyte)
+ rb.nbyte += utf8.UTFMax
+ info.pos = pos
+ b[n] = info
+}
+
+// insertErr is an error code returned by insert. Using this type instead
+// of error improves performance up to 20% for many of the benchmarks.
+type insertErr int
+
+const (
+ iSuccess insertErr = -iota
+ iShortDst
+ iShortSrc
+)
+
+// insertFlush inserts the given rune in the buffer ordered by CCC.
+// If a decomposition with multiple segments are encountered, they leading
+// ones are flushed.
+// It returns a non-zero error code if the rune was not inserted.
+func (rb *reorderBuffer) insertFlush(src input, i int, info Properties) insertErr {
+ if rune := src.hangul(i); rune != 0 {
+ rb.decomposeHangul(rune)
+ return iSuccess
+ }
+ if info.hasDecomposition() {
+ return rb.insertDecomposed(info.Decomposition())
+ }
+ rb.insertSingle(src, i, info)
+ return iSuccess
+}
+
+// insertUnsafe inserts the given rune in the buffer ordered by CCC.
+// It is assumed there is sufficient space to hold the runes. It is the
+// responsibility of the caller to ensure this. This can be done by checking
+// the state returned by the streamSafe type.
+func (rb *reorderBuffer) insertUnsafe(src input, i int, info Properties) {
+ if rune := src.hangul(i); rune != 0 {
+ rb.decomposeHangul(rune)
+ }
+ if info.hasDecomposition() {
+ // TODO: inline.
+ rb.insertDecomposed(info.Decomposition())
+ } else {
+ rb.insertSingle(src, i, info)
+ }
+}
+
+// insertDecomposed inserts an entry in to the reorderBuffer for each rune
+// in dcomp. dcomp must be a sequence of decomposed UTF-8-encoded runes.
+// It flushes the buffer on each new segment start.
+func (rb *reorderBuffer) insertDecomposed(dcomp []byte) insertErr {
+ rb.tmpBytes.setBytes(dcomp)
+ // As the streamSafe accounting already handles the counting for modifiers,
+ // we don't have to call next. However, we do need to keep the accounting
+ // intact when flushing the buffer.
+ for i := 0; i < len(dcomp); {
+ info := rb.f.info(rb.tmpBytes, i)
+ if info.BoundaryBefore() && rb.nrune > 0 && !rb.doFlush() {
+ return iShortDst
+ }
+ i += copy(rb.byte[rb.nbyte:], dcomp[i:i+int(info.size)])
+ rb.insertOrdered(info)
+ }
+ return iSuccess
+}
+
+// insertSingle inserts an entry in the reorderBuffer for the rune at
+// position i. info is the runeInfo for the rune at position i.
+func (rb *reorderBuffer) insertSingle(src input, i int, info Properties) {
+ src.copySlice(rb.byte[rb.nbyte:], i, i+int(info.size))
+ rb.insertOrdered(info)
+}
+
+// insertCGJ inserts a Combining Grapheme Joiner (0x034f) into rb.
+func (rb *reorderBuffer) insertCGJ() {
+ rb.insertSingle(input{str: GraphemeJoiner}, 0, Properties{size: uint8(len(GraphemeJoiner))})
+}
+
+// appendRune inserts a rune at the end of the buffer. It is used for Hangul.
+func (rb *reorderBuffer) appendRune(r rune) {
+ bn := rb.nbyte
+ sz := utf8.EncodeRune(rb.byte[bn:], rune(r))
+ rb.nbyte += utf8.UTFMax
+ rb.rune[rb.nrune] = Properties{pos: bn, size: uint8(sz)}
+ rb.nrune++
+}
+
+// assignRune sets a rune at position pos. It is used for Hangul and recomposition.
+func (rb *reorderBuffer) assignRune(pos int, r rune) {
+ bn := rb.rune[pos].pos
+ sz := utf8.EncodeRune(rb.byte[bn:], rune(r))
+ rb.rune[pos] = Properties{pos: bn, size: uint8(sz)}
+}
+
+// runeAt returns the rune at position n. It is used for Hangul and recomposition.
+func (rb *reorderBuffer) runeAt(n int) rune {
+ inf := rb.rune[n]
+ r, _ := utf8.DecodeRune(rb.byte[inf.pos : inf.pos+inf.size])
+ return r
+}
+
+// bytesAt returns the UTF-8 encoding of the rune at position n.
+// It is used for Hangul and recomposition.
+func (rb *reorderBuffer) bytesAt(n int) []byte {
+ inf := rb.rune[n]
+ return rb.byte[inf.pos : int(inf.pos)+int(inf.size)]
+}
+
+// For Hangul we combine algorithmically, instead of using tables.
+const (
+ hangulBase = 0xAC00 // UTF-8(hangulBase) -> EA B0 80
+ hangulBase0 = 0xEA
+ hangulBase1 = 0xB0
+ hangulBase2 = 0x80
+
+ hangulEnd = hangulBase + jamoLVTCount // UTF-8(0xD7A4) -> ED 9E A4
+ hangulEnd0 = 0xED
+ hangulEnd1 = 0x9E
+ hangulEnd2 = 0xA4
+
+ jamoLBase = 0x1100 // UTF-8(jamoLBase) -> E1 84 00
+ jamoLBase0 = 0xE1
+ jamoLBase1 = 0x84
+ jamoLEnd = 0x1113
+ jamoVBase = 0x1161
+ jamoVEnd = 0x1176
+ jamoTBase = 0x11A7
+ jamoTEnd = 0x11C3
+
+ jamoTCount = 28
+ jamoVCount = 21
+ jamoVTCount = 21 * 28
+ jamoLVTCount = 19 * 21 * 28
+)
+
+const hangulUTF8Size = 3
+
+func isHangul(b []byte) bool {
+ if len(b) < hangulUTF8Size {
+ return false
+ }
+ b0 := b[0]
+ if b0 < hangulBase0 {
+ return false
+ }
+ b1 := b[1]
+ switch {
+ case b0 == hangulBase0:
+ return b1 >= hangulBase1
+ case b0 < hangulEnd0:
+ return true
+ case b0 > hangulEnd0:
+ return false
+ case b1 < hangulEnd1:
+ return true
+ }
+ return b1 == hangulEnd1 && b[2] < hangulEnd2
+}
+
+func isHangulString(b string) bool {
+ if len(b) < hangulUTF8Size {
+ return false
+ }
+ b0 := b[0]
+ if b0 < hangulBase0 {
+ return false
+ }
+ b1 := b[1]
+ switch {
+ case b0 == hangulBase0:
+ return b1 >= hangulBase1
+ case b0 < hangulEnd0:
+ return true
+ case b0 > hangulEnd0:
+ return false
+ case b1 < hangulEnd1:
+ return true
+ }
+ return b1 == hangulEnd1 && b[2] < hangulEnd2
+}
+
+// Caller must ensure len(b) >= 2.
+func isJamoVT(b []byte) bool {
+ // True if (rune & 0xff00) == jamoLBase
+ return b[0] == jamoLBase0 && (b[1]&0xFC) == jamoLBase1
+}
+
+func isHangulWithoutJamoT(b []byte) bool {
+ c, _ := utf8.DecodeRune(b)
+ c -= hangulBase
+ return c < jamoLVTCount && c%jamoTCount == 0
+}
+
+// decomposeHangul writes the decomposed Hangul to buf and returns the number
+// of bytes written. len(buf) should be at least 9.
+func decomposeHangul(buf []byte, r rune) int {
+ const JamoUTF8Len = 3
+ r -= hangulBase
+ x := r % jamoTCount
+ r /= jamoTCount
+ utf8.EncodeRune(buf, jamoLBase+r/jamoVCount)
+ utf8.EncodeRune(buf[JamoUTF8Len:], jamoVBase+r%jamoVCount)
+ if x != 0 {
+ utf8.EncodeRune(buf[2*JamoUTF8Len:], jamoTBase+x)
+ return 3 * JamoUTF8Len
+ }
+ return 2 * JamoUTF8Len
+}
+
+// decomposeHangul algorithmically decomposes a Hangul rune into
+// its Jamo components.
+// See https://unicode.org/reports/tr15/#Hangul for details on decomposing Hangul.
+func (rb *reorderBuffer) decomposeHangul(r rune) {
+ r -= hangulBase
+ x := r % jamoTCount
+ r /= jamoTCount
+ rb.appendRune(jamoLBase + r/jamoVCount)
+ rb.appendRune(jamoVBase + r%jamoVCount)
+ if x != 0 {
+ rb.appendRune(jamoTBase + x)
+ }
+}
+
+// combineHangul algorithmically combines Jamo character components into Hangul.
+// See https://unicode.org/reports/tr15/#Hangul for details on combining Hangul.
+func (rb *reorderBuffer) combineHangul(s, i, k int) {
+ b := rb.rune[:]
+ bn := rb.nrune
+ for ; i < bn; i++ {
+ cccB := b[k-1].ccc
+ cccC := b[i].ccc
+ if cccB == 0 {
+ s = k - 1
+ }
+ if s != k-1 && cccB >= cccC {
+ // b[i] is blocked by greater-equal cccX below it
+ b[k] = b[i]
+ k++
+ } else {
+ l := rb.runeAt(s) // also used to compare to hangulBase
+ v := rb.runeAt(i) // also used to compare to jamoT
+ switch {
+ case jamoLBase <= l && l < jamoLEnd &&
+ jamoVBase <= v && v < jamoVEnd:
+ // 11xx plus 116x to LV
+ rb.assignRune(s, hangulBase+
+ (l-jamoLBase)*jamoVTCount+(v-jamoVBase)*jamoTCount)
+ case hangulBase <= l && l < hangulEnd &&
+ jamoTBase < v && v < jamoTEnd &&
+ ((l-hangulBase)%jamoTCount) == 0:
+ // ACxx plus 11Ax to LVT
+ rb.assignRune(s, l+v-jamoTBase)
+ default:
+ b[k] = b[i]
+ k++
+ }
+ }
+ }
+ rb.nrune = k
+}
+
+// compose recombines the runes in the buffer.
+// It should only be used to recompose a single segment, as it will not
+// handle alternations between Hangul and non-Hangul characters correctly.
+func (rb *reorderBuffer) compose() {
+ // Lazily load the map used by the combine func below, but do
+ // it outside of the loop.
+ recompMapOnce.Do(buildRecompMap)
+
+ // UAX #15, section X5 , including Corrigendum #5
+ // "In any character sequence beginning with starter S, a character C is
+ // blocked from S if and only if there is some character B between S
+ // and C, and either B is a starter or it has the same or higher
+ // combining class as C."
+ bn := rb.nrune
+ if bn == 0 {
+ return
+ }
+ k := 1
+ b := rb.rune[:]
+ for s, i := 0, 1; i < bn; i++ {
+ if isJamoVT(rb.bytesAt(i)) {
+ // Redo from start in Hangul mode. Necessary to support
+ // U+320E..U+321E in NFKC mode.
+ rb.combineHangul(s, i, k)
+ return
+ }
+ ii := b[i]
+ // We can only use combineForward as a filter if we later
+ // get the info for the combined character. This is more
+ // expensive than using the filter. Using combinesBackward()
+ // is safe.
+ if ii.combinesBackward() {
+ cccB := b[k-1].ccc
+ cccC := ii.ccc
+ blocked := false // b[i] blocked by starter or greater or equal CCC?
+ if cccB == 0 {
+ s = k - 1
+ } else {
+ blocked = s != k-1 && cccB >= cccC
+ }
+ if !blocked {
+ combined := combine(rb.runeAt(s), rb.runeAt(i))
+ if combined != 0 {
+ rb.assignRune(s, combined)
+ continue
+ }
+ }
+ }
+ b[k] = b[i]
+ k++
+ }
+ rb.nrune = k
+}