aboutsummaryrefslogblamecommitdiff
path: root/vendor/golang.org/x/text/unicode/norm/composition.go
blob: e2087bce52771ac4fc906f1afa9d27efecbac975 (plain) (tree)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512































































































































































































































































































































































































































































































































                                                                                                    
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package norm

import "unicode/utf8"

const (
	maxNonStarters = 30
	// The maximum number of characters needed for a buffer is
	// maxNonStarters + 1 for the starter + 1 for the GCJ
	maxBufferSize    = maxNonStarters + 2
	maxNFCExpansion  = 3  // NFC(0x1D160)
	maxNFKCExpansion = 18 // NFKC(0xFDFA)

	maxByteBufferSize = utf8.UTFMax * maxBufferSize // 128
)

// ssState is used for reporting the segment state after inserting a rune.
// It is returned by streamSafe.next.
type ssState int

const (
	// Indicates a rune was successfully added to the segment.
	ssSuccess ssState = iota
	// Indicates a rune starts a new segment and should not be added.
	ssStarter
	// Indicates a rune caused a segment overflow and a CGJ should be inserted.
	ssOverflow
)

// streamSafe implements the policy of when a CGJ should be inserted.
type streamSafe uint8

// first inserts the first rune of a segment. It is a faster version of next if
// it is known p represents the first rune in a segment.
func (ss *streamSafe) first(p Properties) {
	*ss = streamSafe(p.nTrailingNonStarters())
}

// insert returns a ssState value to indicate whether a rune represented by p
// can be inserted.
func (ss *streamSafe) next(p Properties) ssState {
	if *ss > maxNonStarters {
		panic("streamSafe was not reset")
	}
	n := p.nLeadingNonStarters()
	if *ss += streamSafe(n); *ss > maxNonStarters {
		*ss = 0
		return ssOverflow
	}
	// The Stream-Safe Text Processing prescribes that the counting can stop
	// as soon as a starter is encountered. However, there are some starters,
	// like Jamo V and T, that can combine with other runes, leaving their
	// successive non-starters appended to the previous, possibly causing an
	// overflow. We will therefore consider any rune with a non-zero nLead to
	// be a non-starter. Note that it always hold that if nLead > 0 then
	// nLead == nTrail.
	if n == 0 {
		*ss = streamSafe(p.nTrailingNonStarters())
		return ssStarter
	}
	return ssSuccess
}

// backwards is used for checking for overflow and segment starts
// when traversing a string backwards. Users do not need to call first
// for the first rune. The state of the streamSafe retains the count of
// the non-starters loaded.
func (ss *streamSafe) backwards(p Properties) ssState {
	if *ss > maxNonStarters {
		panic("streamSafe was not reset")
	}
	c := *ss + streamSafe(p.nTrailingNonStarters())
	if c > maxNonStarters {
		return ssOverflow
	}
	*ss = c
	if p.nLeadingNonStarters() == 0 {
		return ssStarter
	}
	return ssSuccess
}

func (ss streamSafe) isMax() bool {
	return ss == maxNonStarters
}

// GraphemeJoiner is inserted after maxNonStarters non-starter runes.
const GraphemeJoiner = "\u034F"

// reorderBuffer is used to normalize a single segment.  Characters inserted with
// insert are decomposed and reordered based on CCC. The compose method can
// be used to recombine characters.  Note that the byte buffer does not hold
// the UTF-8 characters in order.  Only the rune array is maintained in sorted
// order. flush writes the resulting segment to a byte array.
type reorderBuffer struct {
	rune  [maxBufferSize]Properties // Per character info.
	byte  [maxByteBufferSize]byte   // UTF-8 buffer. Referenced by runeInfo.pos.
	nbyte uint8                     // Number or bytes.
	ss    streamSafe                // For limiting length of non-starter sequence.
	nrune int                       // Number of runeInfos.
	f     formInfo

	src      input
	nsrc     int
	tmpBytes input

	out    []byte
	flushF func(*reorderBuffer) bool
}

func (rb *reorderBuffer) init(f Form, src []byte) {
	rb.f = *formTable[f]
	rb.src.setBytes(src)
	rb.nsrc = len(src)
	rb.ss = 0
}

func (rb *reorderBuffer) initString(f Form, src string) {
	rb.f = *formTable[f]
	rb.src.setString(src)
	rb.nsrc = len(src)
	rb.ss = 0
}

func (rb *reorderBuffer) setFlusher(out []byte, f func(*reorderBuffer) bool) {
	rb.out = out
	rb.flushF = f
}

// reset discards all characters from the buffer.
func (rb *reorderBuffer) reset() {
	rb.nrune = 0
	rb.nbyte = 0
}

func (rb *reorderBuffer) doFlush() bool {
	if rb.f.composing {
		rb.compose()
	}
	res := rb.flushF(rb)
	rb.reset()
	return res
}

// appendFlush appends the normalized segment to rb.out.
func appendFlush(rb *reorderBuffer) bool {
	for i := 0; i < rb.nrune; i++ {
		start := rb.rune[i].pos
		end := start + rb.rune[i].size
		rb.out = append(rb.out, rb.byte[start:end]...)
	}
	return true
}

// flush appends the normalized segment to out and resets rb.
func (rb *reorderBuffer) flush(out []byte) []byte {
	for i := 0; i < rb.nrune; i++ {
		start := rb.rune[i].pos
		end := start + rb.rune[i].size
		out = append(out, rb.byte[start:end]...)
	}
	rb.reset()
	return out
}

// flushCopy copies the normalized segment to buf and resets rb.
// It returns the number of bytes written to buf.
func (rb *reorderBuffer) flushCopy(buf []byte) int {
	p := 0
	for i := 0; i < rb.nrune; i++ {
		runep := rb.rune[i]
		p += copy(buf[p:], rb.byte[runep.pos:runep.pos+runep.size])
	}
	rb.reset()
	return p
}

// insertOrdered inserts a rune in the buffer, ordered by Canonical Combining Class.
// It returns false if the buffer is not large enough to hold the rune.
// It is used internally by insert and insertString only.
func (rb *reorderBuffer) insertOrdered(info Properties) {
	n := rb.nrune
	b := rb.rune[:]
	cc := info.ccc
	if cc > 0 {
		// Find insertion position + move elements to make room.
		for ; n > 0; n-- {
			if b[n-1].ccc <= cc {
				break
			}
			b[n] = b[n-1]
		}
	}
	rb.nrune += 1
	pos := uint8(rb.nbyte)
	rb.nbyte += utf8.UTFMax
	info.pos = pos
	b[n] = info
}

// insertErr is an error code returned by insert. Using this type instead
// of error improves performance up to 20% for many of the benchmarks.
type insertErr int

const (
	iSuccess insertErr = -iota
	iShortDst
	iShortSrc
)

// insertFlush inserts the given rune in the buffer ordered by CCC.
// If a decomposition with multiple segments are encountered, they leading
// ones are flushed.
// It returns a non-zero error code if the rune was not inserted.
func (rb *reorderBuffer) insertFlush(src input, i int, info Properties) insertErr {
	if rune := src.hangul(i); rune != 0 {
		rb.decomposeHangul(rune)
		return iSuccess
	}
	if info.hasDecomposition() {
		return rb.insertDecomposed(info.Decomposition())
	}
	rb.insertSingle(src, i, info)
	return iSuccess
}

// insertUnsafe inserts the given rune in the buffer ordered by CCC.
// It is assumed there is sufficient space to hold the runes. It is the
// responsibility of the caller to ensure this. This can be done by checking
// the state returned by the streamSafe type.
func (rb *reorderBuffer) insertUnsafe(src input, i int, info Properties) {
	if rune := src.hangul(i); rune != 0 {
		rb.decomposeHangul(rune)
	}
	if info.hasDecomposition() {
		// TODO: inline.
		rb.insertDecomposed(info.Decomposition())
	} else {
		rb.insertSingle(src, i, info)
	}
}

// insertDecomposed inserts an entry in to the reorderBuffer for each rune
// in dcomp. dcomp must be a sequence of decomposed UTF-8-encoded runes.
// It flushes the buffer on each new segment start.
func (rb *reorderBuffer) insertDecomposed(dcomp []byte) insertErr {
	rb.tmpBytes.setBytes(dcomp)
	// As the streamSafe accounting already handles the counting for modifiers,
	// we don't have to call next. However, we do need to keep the accounting
	// intact when flushing the buffer.
	for i := 0; i < len(dcomp); {
		info := rb.f.info(rb.tmpBytes, i)
		if info.BoundaryBefore() && rb.nrune > 0 && !rb.doFlush() {
			return iShortDst
		}
		i += copy(rb.byte[rb.nbyte:], dcomp[i:i+int(info.size)])
		rb.insertOrdered(info)
	}
	return iSuccess
}

// insertSingle inserts an entry in the reorderBuffer for the rune at
// position i. info is the runeInfo for the rune at position i.
func (rb *reorderBuffer) insertSingle(src input, i int, info Properties) {
	src.copySlice(rb.byte[rb.nbyte:], i, i+int(info.size))
	rb.insertOrdered(info)
}

// insertCGJ inserts a Combining Grapheme Joiner (0x034f) into rb.
func (rb *reorderBuffer) insertCGJ() {
	rb.insertSingle(input{str: GraphemeJoiner}, 0, Properties{size: uint8(len(GraphemeJoiner))})
}

// appendRune inserts a rune at the end of the buffer. It is used for Hangul.
func (rb *reorderBuffer) appendRune(r rune) {
	bn := rb.nbyte
	sz := utf8.EncodeRune(rb.byte[bn:], rune(r))
	rb.nbyte += utf8.UTFMax
	rb.rune[rb.nrune] = Properties{pos: bn, size: uint8(sz)}
	rb.nrune++
}

// assignRune sets a rune at position pos. It is used for Hangul and recomposition.
func (rb *reorderBuffer) assignRune(pos int, r rune) {
	bn := rb.rune[pos].pos
	sz := utf8.EncodeRune(rb.byte[bn:], rune(r))
	rb.rune[pos] = Properties{pos: bn, size: uint8(sz)}
}

// runeAt returns the rune at position n. It is used for Hangul and recomposition.
func (rb *reorderBuffer) runeAt(n int) rune {
	inf := rb.rune[n]
	r, _ := utf8.DecodeRune(rb.byte[inf.pos : inf.pos+inf.size])
	return r
}

// bytesAt returns the UTF-8 encoding of the rune at position n.
// It is used for Hangul and recomposition.
func (rb *reorderBuffer) bytesAt(n int) []byte {
	inf := rb.rune[n]
	return rb.byte[inf.pos : int(inf.pos)+int(inf.size)]
}

// For Hangul we combine algorithmically, instead of using tables.
const (
	hangulBase  = 0xAC00 // UTF-8(hangulBase) -> EA B0 80
	hangulBase0 = 0xEA
	hangulBase1 = 0xB0
	hangulBase2 = 0x80

	hangulEnd  = hangulBase + jamoLVTCount // UTF-8(0xD7A4) -> ED 9E A4
	hangulEnd0 = 0xED
	hangulEnd1 = 0x9E
	hangulEnd2 = 0xA4

	jamoLBase  = 0x1100 // UTF-8(jamoLBase) -> E1 84 00
	jamoLBase0 = 0xE1
	jamoLBase1 = 0x84
	jamoLEnd   = 0x1113
	jamoVBase  = 0x1161
	jamoVEnd   = 0x1176
	jamoTBase  = 0x11A7
	jamoTEnd   = 0x11C3

	jamoTCount   = 28
	jamoVCount   = 21
	jamoVTCount  = 21 * 28
	jamoLVTCount = 19 * 21 * 28
)

const hangulUTF8Size = 3

func isHangul(b []byte) bool {
	if len(b) < hangulUTF8Size {
		return false
	}
	b0 := b[0]
	if b0 < hangulBase0 {
		return false
	}
	b1 := b[1]
	switch {
	case b0 == hangulBase0:
		return b1 >= hangulBase1
	case b0 < hangulEnd0:
		return true
	case b0 > hangulEnd0:
		return false
	case b1 < hangulEnd1:
		return true
	}
	return b1 == hangulEnd1 && b[2] < hangulEnd2
}

func isHangulString(b string) bool {
	if len(b) < hangulUTF8Size {
		return false
	}
	b0 := b[0]
	if b0 < hangulBase0 {
		return false
	}
	b1 := b[1]
	switch {
	case b0 == hangulBase0:
		return b1 >= hangulBase1
	case b0 < hangulEnd0:
		return true
	case b0 > hangulEnd0:
		return false
	case b1 < hangulEnd1:
		return true
	}
	return b1 == hangulEnd1 && b[2] < hangulEnd2
}

// Caller must ensure len(b) >= 2.
func isJamoVT(b []byte) bool {
	// True if (rune & 0xff00) == jamoLBase
	return b[0] == jamoLBase0 && (b[1]&0xFC) == jamoLBase1
}

func isHangulWithoutJamoT(b []byte) bool {
	c, _ := utf8.DecodeRune(b)
	c -= hangulBase
	return c < jamoLVTCount && c%jamoTCount == 0
}

// decomposeHangul writes the decomposed Hangul to buf and returns the number
// of bytes written.  len(buf) should be at least 9.
func decomposeHangul(buf []byte, r rune) int {
	const JamoUTF8Len = 3
	r -= hangulBase
	x := r % jamoTCount
	r /= jamoTCount
	utf8.EncodeRune(buf, jamoLBase+r/jamoVCount)
	utf8.EncodeRune(buf[JamoUTF8Len:], jamoVBase+r%jamoVCount)
	if x != 0 {
		utf8.EncodeRune(buf[2*JamoUTF8Len:], jamoTBase+x)
		return 3 * JamoUTF8Len
	}
	return 2 * JamoUTF8Len
}

// decomposeHangul algorithmically decomposes a Hangul rune into
// its Jamo components.
// See https://unicode.org/reports/tr15/#Hangul for details on decomposing Hangul.
func (rb *reorderBuffer) decomposeHangul(r rune) {
	r -= hangulBase
	x := r % jamoTCount
	r /= jamoTCount
	rb.appendRune(jamoLBase + r/jamoVCount)
	rb.appendRune(jamoVBase + r%jamoVCount)
	if x != 0 {
		rb.appendRune(jamoTBase + x)
	}
}

// combineHangul algorithmically combines Jamo character components into Hangul.
// See https://unicode.org/reports/tr15/#Hangul for details on combining Hangul.
func (rb *reorderBuffer) combineHangul(s, i, k int) {
	b := rb.rune[:]
	bn := rb.nrune
	for ; i < bn; i++ {
		cccB := b[k-1].ccc
		cccC := b[i].ccc
		if cccB == 0 {
			s = k - 1
		}
		if s != k-1 && cccB >= cccC {
			// b[i] is blocked by greater-equal cccX below it
			b[k] = b[i]
			k++
		} else {
			l := rb.runeAt(s) // also used to compare to hangulBase
			v := rb.runeAt(i) // also used to compare to jamoT
			switch {
			case jamoLBase <= l && l < jamoLEnd &&
				jamoVBase <= v && v < jamoVEnd:
				// 11xx plus 116x to LV
				rb.assignRune(s, hangulBase+
					(l-jamoLBase)*jamoVTCount+(v-jamoVBase)*jamoTCount)
			case hangulBase <= l && l < hangulEnd &&
				jamoTBase < v && v < jamoTEnd &&
				((l-hangulBase)%jamoTCount) == 0:
				// ACxx plus 11Ax to LVT
				rb.assignRune(s, l+v-jamoTBase)
			default:
				b[k] = b[i]
				k++
			}
		}
	}
	rb.nrune = k
}

// compose recombines the runes in the buffer.
// It should only be used to recompose a single segment, as it will not
// handle alternations between Hangul and non-Hangul characters correctly.
func (rb *reorderBuffer) compose() {
	// Lazily load the map used by the combine func below, but do
	// it outside of the loop.
	recompMapOnce.Do(buildRecompMap)

	// UAX #15, section X5 , including Corrigendum #5
	// "In any character sequence beginning with starter S, a character C is
	//  blocked from S if and only if there is some character B between S
	//  and C, and either B is a starter or it has the same or higher
	//  combining class as C."
	bn := rb.nrune
	if bn == 0 {
		return
	}
	k := 1
	b := rb.rune[:]
	for s, i := 0, 1; i < bn; i++ {
		if isJamoVT(rb.bytesAt(i)) {
			// Redo from start in Hangul mode. Necessary to support
			// U+320E..U+321E in NFKC mode.
			rb.combineHangul(s, i, k)
			return
		}
		ii := b[i]
		// We can only use combineForward as a filter if we later
		// get the info for the combined character. This is more
		// expensive than using the filter. Using combinesBackward()
		// is safe.
		if ii.combinesBackward() {
			cccB := b[k-1].ccc
			cccC := ii.ccc
			blocked := false // b[i] blocked by starter or greater or equal CCC?
			if cccB == 0 {
				s = k - 1
			} else {
				blocked = s != k-1 && cccB >= cccC
			}
			if !blocked {
				combined := combine(rb.runeAt(s), rb.runeAt(i))
				if combined != 0 {
					rb.assignRune(s, combined)
					continue
				}
			}
		}
		b[k] = b[i]
		k++
	}
	rb.nrune = k
}